Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo
نویسندگان
چکیده
Conditional value at risk (CVaR) is a popular measure for quantifying portfolio risk. Sensitivity analysis of CVaR common in management and gradient-based optimization algorithms. In this paper, we study the infinitesimal perturbation estimator sensitivity using randomized quasi-Monte Carlo (RQMC) simulation. RQMC has proved valuable financial option pricing with better rate convergence compared to Monte sampling, but theoretical guarantees new application shall be studied. To end, first prove that RQMC-based strongly consistent under very mild conditions. Under some technical conditions, yields mean error O(n?1/2?1/(4d?2)+?) arbitrarily small ?>0, where d represents dimension points n sample size. Some typical applications estimation are conducted both show how results can applied, as well provide numerical documenting superiority estimator.
منابع مشابه
Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo
W study optimization problems with value-at-risk (VaR) constraints. Because it lacks subadditivity, VaR is not a coherent risk measure and does not necessarily preserve the convexity. Thus, the problems we consider are typically not provably convex. As such, the conditional value-at-risk (CVaR) approximation is often used to handle such problems. Even though the CVaR approximation is known as t...
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Conditional Monte Carlo Estimation of Quantile Sensitivities
E quantile sensitivities is important in many optimization applications, from hedging in financial engineering to service-level constraints in inventory control to more general chance constraints in stochastic programming. Recently, Hong (Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res. 57 118–130) derived a batched infinitesimal perturbation analysis estimator for quantile sensi...
متن کاملParametric Conditional Monte Carlo Density Estimation
In applied density estimation problems, one often has data not only on the target variable, but also on a collection of covariates. In this paper, we study a density estimator that incorporates this additional information by combining parametric estimation and conditional Monte Carlo. We prove an approximate functional asymptotic normality result that illustrates convergence rates and the asymp...
متن کاملMonte Carlo Extension of Quasi-monte Carlo
This paper surveys recent research on using Monte Carlo techniques to improve quasi-Monte Carlo techniques. Randomized quasi-Monte Carlo methods provide a basis for error estimation. They have, in the special case of scrambled nets, also been observed to improve accuracy. Finally through Latin supercube sampling it is possible to use Monte Carlo methods to extend quasi-Monte Carlo methods to hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2022
ISSN: ['1872-6860', '0377-2217']
DOI: https://doi.org/10.1016/j.ejor.2021.11.013